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In this paper, the plane-radial and plane-parallel flows for Newtonian fluid in fractal porous media are
analyzed. Based on the assumption that the porous medium consists of a bundle/set of tortuous stream-
lines/capillaries and on the fractal characteristics of pore size distribution in porous media, the expres-
sions for porosity, flow rate, velocity and permeability for both radial and parallel flows are developed.
The obtained expressions are the functions of tortuosity, fractal dimension, maximum and minimum
pore diameters, and there are no empirical constant and every parameter has clear physical meaning
in the expressions. The pressure distribution equations for plane-radial and plane-parallel flows in fractal
porous media are also derived. The pressure and velocity distributions in plane-radial reservoirs are cal-
culated and discussed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fractal porous media have been studied extensively for more
than two decades since Mandelbrot’s pioneer work [1]. Katz and
Thompson [2] used scanning electron microscopy and optical data
to show that the pore spaces of several sandstones are fractal
geometries. Fractured rocks [3] and fragmented porous media [4]
etc. have also been proved to be fractal objects. It has been shown
that fractal geometry theory has been proven to be powerful in
analysis of transport properties in porous media with complex
and random microstructures [5–8].

The radial flow may exist in many aspects such as oil/water flow
toward a well bore, and fluid flow in fractal reservoir [9–11] is thus
of central interest to hydrogeologists and petroleum engineers.
Tong and Zhang [9] analyzed the pressure behavior of fractal reser-
voir with dual porosity and gave the exact solutions of pressure
distribution for the cases of an infinite outer boundary. Kong
et al. [10] studied the fluid flow in porous media with two fractal
dimensions and presented the pressure diffusion equation in frac-
tal reservoir. Beier [11] presented a pressure-transient model for a
well with a vertical fracture in a fractal reservoir.

The hydraulic conductivity or permeability (hereafter only per-
meability is mentioned) of porous media has been one of hot topics
in the area of porous media. The permeability may be obtained by
experiments [12–14] and numerical simulations [15–17]. How-
ever, the results from either experiments or numerical simulations
are usually correlated as correlations with one or more empirical
constants, and the mechanisms behind the constants are thus often
ll rights reserved.
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ignored. Therefore, the analytical solution for flow and relevant
parameters in porous media is desirable.

In this work, based on the tortuous capillaries and the fractal
characteristics of pores in porous media, the expressions for poros-
ity, flow rate, velocity and permeability are derived for the plane-
radial and plane-parallel flows in fractal porous media. By using
the continuity equations and the state equations for slightly com-
pressible fluid, the pressure distribution equations for plane-radial
and plane-parallel flows in fractal porous media are also derived.
2. Fractal models for plane-radial flow in isotropic porous
media

Fig. 1 shows a coordinate system for radial flow toward the well
bore from the outer region. The well bore radius is rw, h is the res-
ervoir thickness, p and p + dp represent the pressures at distances r
and r + dr, respectively. The pressure increases with the increase of
the radial distance r, so dp/dr > 0.

2.1. Pore number

It has been shown that the cumulative size distributions of
pores/capillaries in fractal porous media whose pore sizes are
greater than or equal to the size k follow the fractal scaling law
[18–20]:

NðL P kÞ ¼ kmax

k

� �Df

ð1Þ

In Eq. (1), kmin 6 k 6 kmax; kmin and kmax are the minimum and max-
imum pore diameters, Df is the fractal dimension for pore spaces,
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Nomenclature

A0 unit cell area
c total compressibility
cf compressibility of fluid
c/ compressibility of pore
d spherical particle diameter
Df fractal dimension
h reservoir thickness
K permeability
K+ dimensionless permeability
N pore number
P pressure
p+ dimensionless pressure
pR pressure at outer boundary radius
pw pressure at well bore
q flow rate through a single tortuous capillary
Q total flow rate
r radial distance

rw well bore radius
R outer boundary radius
V seepage velocity
V+ dimensionless velocity

Greek symbols
k pore diameter
kmax maximum pore diameter
kmin minimum pore diameter
l fluid viscosity
q fluid density
s tortuosity
/ porosity
/A area porosity
/V volume porosity
v pressure conductivity coefficient
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0 < Df < 2 in the two-dimensional space and 0 < Df < 3 in the three-
dimensional space.

We assume that the cumulative number in a fractal set of cap-
illaries (from a pore diameter k to the maximum pore diameter
kmax) cross a unit cell of area A0 perpendicular to the flow direction
is N, then the total cumulative number of pores on a cylindrical
surface of area Ar ¼ 2prh with radius r is

Nr ¼
Ar

A0
N ¼ 2prh

A0

kmax

k

� �Df

ð2Þ

Eq. (2) indicates that the larger the radius r, the larger the total
number of pores. This is consistent with the practical situation. Dif-
ferentiating Eq. (2) with respect to k yields the number of pores
whose sizes are within the infinitesimal range k to k + dk on the
cylindrical surface of area Ar

�dNr ¼
2prh

A0
Df k

Df
maxk

�ðDfþ1Þdk ð3Þ

In Eq. (3), �dNr > 0, which implies that the number of pores de-
creases with the increase of pore size, and this is consistent with
the fractal geometry.

2.2. Porosity

The area porosity at the radial distance r is defined by
Fig. 1. Coordinate system for the plane-radial flow in isotropic porous media, (a)
schematic of a unit cell, and (b) differential element.
/A ¼
Ap

Ar
¼ �1

2prh

Z kmax

kmin

pk2

4
dNr ð4Þ

where Ap is the pore area on the cylindrical surface of area Ar, the
total pore area is calculated by Ap ¼ �

R kmax

kmin

pk2

4 dNr .
The volume porosity at the radial distance between r and r + dr

is defined by

/V ¼
Vp

Vt
¼ �1

2prhdr

Z kmax

kmin

pk2

4
dradNr ð5Þ

where Vp and Vt are, respectively, the pore and total volumes at the
radial distance between r and r + dr, dra is the actual infinitesimal
length for radial flow, and dr is the macroscopic or infinitesimal
straight length for radial flow. In Eq. (5),
Vp ¼ �

R kmax

kmin

pk2

4 dradNr and Vt ¼ 2prhdr.
Since the streamlines or capillaries in porous media are tortu-

ous, dra P dr. The tortuous degree for the streamlines or capillaries
is described by tortuosity, which is often defined by [21,22]

s ¼ La=L ð6Þ

where La and L are the actual length of tortuous flow path and the
straight length or thickness of a sample along the macroscopic pres-
sure gradient, respectively. According to Eq. (6), the relation be-
tween dra and dr can be expressed as

dra ¼ sdr ð7Þ

In Eq. (7), an average value s is taken for a given porous medium,
and the tortuosity usually depends on porosity. For the recent mod-
els for tortuosity, readers may consult the papers by Yu et al. [23–
25].

Inserting Eq. (3) into Eq. (4) results in

/A ¼
pDf

4ð2� Df Þ
k2

max

A0
1� kmin

kmax

� �2�Df
" #

ð8Þ

Inserting Eqs. (3) and (7) into Eq. (5) yields

/V ¼
s � pDf

4ð2� Df Þ
k2

max

A0
1� kmin

kmax

� �2�Df
" #

ð9Þ

Eqs. (8) and (9) present the expressions for area porosity /A and vol-
ume porosity /V for fractal porous media. Although the derivations
of Eqs. (8) and (9) are based on the radial flow, the resultant equa-
tions are independent of the radial distance r. This is consistent with
the practical situation.
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Comparing Eqs. (8) with (9), we have

/V ¼ s/A ð10Þ

Eq. (10) depicts the relationship between the volume porosity and
area porosity. Eq. (10) also indicates that when all capillaries are
straight (s = 1), the volume porosity and area porosity are equal,
and this is consistent with the practical situation. Eq. (10) also indi-
cates that the volume porosity is higher than the area porosity. It
should be noted that Eq. (10) is based on the parallel capillary mod-
el. For other models, Eq. (10) may not be valid.

2.3. Seepage velocity

According to the well-known Hagen–Poiseuille equation, the
flow rate through a single tortuous capillary can be written as [26]

qðkÞ ¼ pk4

128l
dp
dra

ð11Þ

where l is the fluid viscosity and dp/dra is pressure gradient along a
tortuous path/capillary.

The total flow rate across the cylindrical surface of area Ar is

Q ¼ �
Z kmax

kmin

qðkÞdNr ð12Þ

Substituting Eqs. (3), (7), and (11) into Eq. (12), we have

Q ¼ p2Df k
4
max

64lsð4� Df Þ
rh
A0

dp
dr

1� kmin

kmax

� �4�Df
" #

ð13Þ

Since 0 < Df < 2 in the two-dimensional space, the exponent 4 � Df >
2, in general kmin=kmax < 10�2; so ðkmin

kmax
Þ4�Df << 1. Then Eq. (13) is

reduced to

Q ¼ p2Df k
4
max

64lsð4� Df Þ
rh
A0

dp
dr

ð14Þ

Then, the seepage (average) velocity V for radial flow in fractal
porous media can be obtained by

V ¼ Q
Ar
¼ Q

2prh
¼ pDf k

2
max

128lsð4� Df Þ
k2

max

A0

dp
dr

ð15Þ

Eq. (15) indicates that the radial velocity depends on the pressure
gradient, microstructural parameters and fluid property.

2.4. Permeability

The Darcy’s law for the radial flow is expressed as

V ¼ �K
l

dp
dr

ð16Þ

where K is the permeability, and the minus sign represents the
direction of the seepage velocity is opposite to the pressure
gradient.

By comparing Eq. (15) with Eq. (16), we obtain the permeability
expression for the radial flow in fractal porous media as

K ¼ pDf

128sð4� Df Þ
k4

max

A0
ð17Þ

Eq. (17) shows that the permeability is independent of the radial
distance r, and it depends on the pore fractal dimension, tortuosity
and the microstructural parameters of porous media.

From Eq. (17), the dimensionless permeability may be ex-
pressed as

Kþ ¼ K

d2 ¼
pDf k

4
max

128sð4� Df ÞA0d2 ð18Þ
where d is the average diameter of particles. It is seen that the
permeability Eq. (18) strongly depends on the maximum pore size.
The available models for maximum pore size will be given in
Section 4.

2.5. The pressure distribution equation

If the slightly compressible fluid flow in fractal porous media is
assumed, the equation of state is [21]

q ¼ q0ecf Dp ffi q0ð1þ cf DpÞ ð19Þ

where the pressure difference is Dp = p(r, t) � p0, p(r, t) is the pres-
sure at the radial distance r and time t, q is the density of fluid, q0 is
the fluid density at the reference pressure p0, and cf (in the order of
10�4/10�5 MPa�1 [27]) is the compressibility of fluid.

For general porous media, if the compressibility of pores is in-
volved, the porosity may be expressed as [21,28]

/ ¼ /0ð1þ c/DpÞ ð20Þ

where u0 is the porosity at the reference pressure p0, and cu denotes
compressibility of pore.

Multiplying Eq. (19) by Eq. (20) yields

q/ ¼ q0/0ð1þ cDpþ cf c/Dp2Þ ð21Þ

In Eq. (21), c ¼ cf þ c/ is the total compressibility.
Since the compressibility (cf or c/) is generally in the order of

10�4/10�5, the product cf c/ is about in the order of 10�8/10�10,
which is far less than 1. Thus, the second-order term cf c/Dp2 in
Eq. (21) can be omitted, and then Eq. (21) can be reduced to

q/ ¼ q0/0ð1þ cDpÞ ð22Þ

The continuity equation for the radial flow is given by

@ðq/Þ
@t

þ 1
r
@

@r
ðrqVÞ ¼ 0 ð23Þ

Based on Eqs. (16), (19), and (22), Eq. (23) can be rewritten as the
classic form of pressure distribution equation for radial flow, i.e.

@2p
@r2 þ

1
r
@p
@r
¼ 1

v
@p
@t

ð24aÞ

where v is called the pressure conductivity coefficient:

v ¼ K
/0lc

ð24bÞ

It can be seen from Eq. (24) that the pressure conductivity coeffi-
cient is related to the permeability, porosity, compressibility and
viscosity. In the present model the permeability K is determined
by Eq. (17), which has no empirical constant, and more physical
mechanisms are revealed. Eq. (24) with proper boundary conditions
can be solved for the pressure distribution.

If an incompressible fluid flow in porous media is involved,
the fluid density is a constant, cf = 0, then Eq. (24b) can be written

as

v ¼ K
/0lc/

ð24cÞ

Eq. (24c) is the pressure conductivity coefficient for incompressible
fluid.

Although Eq. (24) is formally the same as that appearing in text-
books on porous medium, the permeability K in Eq. (24) is involved
with the fractal natures. And, although the pressure distribution
equation discussed in this section is based on slightly compressible
fluid for general consideration, it is easy to extend to that for
incompressible fluid. In result sections, we only consider the
incompressible fluid and steady state flow for simplicity.



Fig. 2. Coordinate system for the plane-parallel flow in isotropic porous media.
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2.6. Dimensionless pressure and velocity

Assume that the pressure p is independent of time t and the
flow is toward a well from radial distance R. Then, the pressure dis-
tribution equation and boundary conditions for plane-radial flow
can be obtained from Eq. (24) as

d2p

dr2 þ
1
r

dp
dr
¼ 0 ðrw 6 r 6 RÞ ð25Þ

pðr ¼ rwÞ ¼ pw ð26Þ
pðr ¼ RÞ ¼ pR ð27Þ

where R is the radius of a cylindrical region into which fluid flows,
pw is the pressure at well bore, pR is the pressure at radial distance R,
and pR > pw.

According to Eqs: (25)–(27), the radial pressure distribution is
obtained as

pðrÞ ¼ pw þ ðpR � pwÞ
lnðr=rwÞ
lnðR=rwÞ

ð28aÞ

The pressure gradient is

dp
dr
¼ 1

r
pR � pw

lnðR=rwÞ
ð> 0Þ ð28bÞ

Eq. (28) indicates that the pressure increases with the distance r,
but the value of the pressure gradient (dp/dr) decreases with the in-
crease of the radial distance r, and the pressure gradient approaches
zero as r tends to infinity because the pressure pR at infinity remains
finite.

Inserting Eq. (28b) into Eq. (15) results in

V ¼ pDf ðpR � pwÞk4
max

128lsrð4� Df Þ lnðR=rwÞA0
ð29Þ

Eq. (29) reveals that the average (superficial) velocity decreases
with the radial distance r, and due to the same reason as for the
pressure gradient, the radial velocity at the infinity approaches
zero. Eq. (29) also shows that when the fractal dimension is Df =
2, the velocity reaches the maximum value. This is interpreted
as that when the fractal dimension reaches Df = 2, a unit cell is
completely occupied by pores and no solid phase/particle exists
in the space (in this situation the area porosity is unity), leading
to the maximum velocity for flow. In addition, when porosity is
unity, the streamlines become straight, and thus the tortuosity
reaches the minimum value of 1. This also causes the minimum
flow resistance and thus maximum velocity. Eq. (29) indicates that
the radial velocity is related to the structural parameters (Df, r, s,
kmax, R and rw) of a porous medium, fluid property (l), and pres-
sure difference between two points. It is seen that the possible
factors affecting the velocity in porous media are fully revealed,
and every parameter in Eq. (29) has clear physical meaning. How-
ever, since the conventional method defines the velocity in porous
media by the volume average [21], and the effects of the micro-
structural parameters on flow velocity in porous media are often
ignored.

From Eqs. (28a) and (29), the dimensionless pressure and veloc-
ity distribution equations for radial flow, respectively, are

pþ ¼ pðrÞ
pw
¼ 1þ pR

pw
� 1

� �
lnðrþÞ

lnðR=rwÞ
ð30Þ

Vþ ¼ V
d2

l
pw
rw

¼
pDf

pR
pw
� 1

� �
k4

max

128sð4� Df Þ lnðR=rwÞA0d2

1
rþ

ð31Þ

where r+ = r/rw is dimensionless radial distance.
3. Fractal models for plane-parallel flow in isotropic porous
media

Fig. 2 shows a coordinate system for parallel flow along the x-
axis direction. p and p + dp represent the pressures at the coordi-
nates x and x + dx, respectively. The pressure decreases with the in-
crease of the horizontal distance, so dp/dx < 0.

3.1. Pore number

The number of pores whose diameters are within the infinites-
imal range k to k + dk in the cross-sectional area A

�dNA ¼
A
A0

Df k
Df
maxk

�ðDfþ1Þdk ð32Þ

Eq. (32) shows that the pore number is independent of the horizon-
tal distance x and is only related to the cross-sectional area and
microstructural parameters.

3.2. Porosity

For plane-parallel flow, the area porosity /A and volume poros-
ity /V are exactly the same as Eqs. (8,9,10). This can be explained
that the structural parameters (kmin, kmax, Df, s and A0) for pores/
capillaries are the same in different coordinate systems, and poros-
ity is a macroscopic parameter which is independent of the coordi-
nate system chosen.

3.3. Seepage velocity

By the similar way with radial flow, the seepage (average)
velocity V for parallel flow in porous media is obtained as

V ¼ Q
A
¼ pDf k

2
max

128lsð4� Df Þ
k2

max

A0
�dp

dx

� �
ð33aÞ

where �dp/dx > 0. Eq. (33a) denotes that the seepage (average)
velocity is related to the microstructures of porous media and pres-
sure gradient. Eq. (33a) also shows that the velocity keeps un-
changed when the pressure gradient is a constant. For anisotropic
porous media, the velocities in x-, y- and z-directions may be differ-
ent, and then we have the velocity equation in the vector form

~V ¼ � pDf k
2
max

128lsð4� Df Þ
k2

max

A0
rp ð33bÞ

where ~V ¼ Vx
~iþ Vy

~jþ Vz
~k, and Vx, Vy and Vz are the velocity compo-

nents in the x-, y-, and z-directions, respectively. In this situation,
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the parameters in different directions are inserted into Eq. (33b),
then the seepage (average) velocities in x-, y- and z-directions can
be obtained, respectively. Compared Eq. (33a) with Eq. (15), the
seepage velocity depends not only on the geometrical parameters
of porous media but also on the pressure gradient (op/or or �op/
ox), and the coefficient before the pressure gradient in Eqs. (15)
and (33a) is the same. This is expected.

3.4. Permeability

The Darcy’s law for the plane-parallel flow is expressed as

Vx ¼
K
l � dp

dx

� �
ð34Þ

By comparing Eq. (33a) with Eq. (34), we obtain the permeability
expression for the plane-parallel flow which is exactly the same
as Eq. (17). This shows that the permeability is independent of
the spatial coordinate and fluid properties, and it only depends on
the inherent structural parameters of porous media.

3.5. The pressure distribution equation

The continuity equation for the parallel flow is given by

@ðq/Þ
@t

þ @

@x
ðqVxÞ ¼ 0 ð35Þ

Based on Eqs. (19), (22), and (34), Eq. (35) can be rewritten as the
classic form of pressure distribution equation for parallel flow

@2p
@x2 ¼

1
v
@p
@t

ð36aÞ

where v is exactly the same as Eq. (24b). This is expected because
the permeability, porosity, viscosity and compressibility are all
independent of the coordinate system chosen.

Eq. (36) can be further written as the general form in three
dimensions as follows:

r2p ¼ 1
v
@p
@t

ð36bÞ

where r2p ¼ @2p=@x2 þ @2p=@y2 þ @2p=@z2, Eq. (36) with proper
boundary conditions can be solved for the pressure distribution.

3.6. Dimensionless pressure and velocity

For steady state flow, by solving the pressure distribution equa-
tion with boundary conditions (p(x = 0) = p0 and p(x = L) = pL), we
obtain the pressure distribution expression for plane-parallel flow

pðxÞ ¼ p0 � ðp0 � pLÞ
x
L

ð37aÞ

where L is the length of a medium/sample.
The pressure gradient is

dp
dx
¼ pL � p0

L
ð< 0Þ ð37bÞ

From Eq. (37) we can see that the pressure decreases linearly with
the distance, but the value of the pressure gradient is independent
of the horizontal distance x.

Inserting Eq. (37) into Eq. (33a) yields

V ¼ pDf ðp0 � pLÞk4
max

128lLsð4� Df ÞA0
ð38Þ

where p0 > pL. Eq. (38) shows that the velocity is proportional to the
pressure drop between two points in a medium. Eq. (38) also indi-
cates that the horizontal velocity is related to the structural param-
eters of porous media, but it is independent of the horizontal
coordinate x. There is no empirical constant and every parameter
in Eq. (38) has clear physical meaning.

From Eqs. (37a) and (38), the dimensionless pressure and veloc-
ity distribution equations for parallel flow are expressed, respec-
tively, as

Pþ ¼ pðxÞ
p0
¼ 1� 1� pL

p0

� �
x
L

ð39Þ

Vþ ¼ V
d2

l
pL
L

¼
pDf

p0
pL
� 1

� �
k4

max

128sð4� Df ÞA0d2 ð40Þ
4. Results and discussion

Now, the fractal models for velocity, permeability and pressure
distribution equations have been obtained analytically. It is seen
that the models presented in this work do not contain any empir-
ical constant and every parameter has clear physical meaning.
However, the determination of these quantities such as velocity,
permeability and pressure distributions in a porous medium de-
pends on the availability of other parameters such as s, kmax, Df

and A0.
A correlation between the average tortuosity of flow path and

porosity was given by [29]

s ¼ 1þ 0:41 lnð1=/V Þ ð41Þ

which was obtained by the experiments on flow through beds
packed with spherical particles. According to Eq. (41), the tortuos-
ity can be calculated if porosity is determined.

The minimum pore diameter kmin can be obtained when three
circular particles touching each other

kmin ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p

p
� 1

2

s
ð42Þ

The maximum pore diameter kmax may be obtained when circu-
lar particles are arranged in an equilateral-triangle array as [18]

kmax1 ¼
d
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/A

1� /A

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pffiffiffi

3
p
ð1� /AÞ

s
� 2

" #
ð43aÞ

The maximum pore diameter kmax may also be obtained when
circular particles are arranged in a square array as [30]

kmax2 ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/A

1� /A

s
ð43bÞ

If the maximum pore size is chosen to be the average value over
Eqs. (43a) and (43b), the average maximum pore diameter can be
obtained as

kmax ¼ ðkmax1 þ kmax2Þ=2 ð43cÞ

So far, no generally accepted maximum pore size model is presently
available in literature.

The pore area fractal dimension Df can be determined by [19]

Df ¼ 2� ln /A

lnðkmin=kmaxÞ
ð44Þ

Once kmin and kmax are obtained by Eqs. (42) and (43c) and porosity
is given, the fractal dimension Df can be calculated from Eq. (44).

The total pore area in a unit cell A0 can be obtained with the aid
of Eqs. (1) and (44)

Ap0 ¼
Z kmax

kmin

pk2

4
ð�dNÞ ¼ pDf k

2
max

4ð2� Df Þ
ð1� /AÞ ð45Þ



Fig. 4. The dimensinoless pressure P+ versus the dimensionless radial distance r+ at
different ratios of pR/pw for radial flow.

Fig. 5. The dimensinoless velocity V+ versus the dimensionless radial distance r+ at
different volumes porosities as pR/pw = 10 for radial flow.

M. Yun et al. / International Journal of Heat and Mass Transfer 52 (2009) 3272–3278 3277
where �dN can be determined by differentiating Eq. (1), and
�dN ¼ Df k

Df
maxk

�ðDfþ1Þdk. The unit cell area A0 is then calculated by

A0 ¼
Ap0

/A
¼ 1� /A

/A

pDf k
2
max

4ð2� Df Þ
ð46Þ

In calculation of pressure, velocity and permeability, once porosity
is given, the parameters s, kmax, Df and A0 are determined by Eqs.
(41), (43c), (44), and (46), respectively. Then, the dimensionless per-
meability, pressure distribution and velocity for radial flow can be
found from Eqs. (18), (30), and (31), respectively. The well bore
and outer boundary radii are respectively assumed to be rw =
0.1 m and R = 100 m. The results will be compared with those pre-
dicted by Ergun’s equation.

From the well-known Ergun’s equation, the dimensionless per-
meability can be obtained as [31]

Kþ ¼ /3
V

150ð1� /V Þ
2 ð47Þ

The Ergun’s equation has hotly been debated in the area of porous
media in the past decades. The empirical constant in Ergun’s equa-
tion was thought to be 150–250 obtained by different researchers
[31–34], and interested readers may consult Refs. [31–35] for detail.

Fig. 3 compares the predictions by the present fractal model Eq.
(18) with Ergun’s relation Eq. (47). Fig. 3 shows that the permeabil-
ity obtained by Eq. (18) may be lower or higher than that by Eq.
(47) when the different models (Eq. (43a), (43b)) for the maximum
pore diameters are applied. When the model Eq. (43c) for the aver-
aged maximum pore diameter is used, the predicted permeability
by Eq. (18) is closer to that by Eq. (47). In all, the present model
Eq. (18) may qualitatively present an agreement with Ergun’s
equation.

Fig. 4 denotes the relationship between the dimensionless pres-
sure p+ and the dimensionless radial distance r+ by Eq. (30) for ra-
dial flow. The dimensionless pressure p+ increases with the
increase of r+ and the ratio of pR/pw. This is consistent with the
physics situation.

For calculation of flow velocity by Eq. (29), we here give an
example. In a general reservoir, pR � pw = 1 MPa when R = 100 m
and rw = 0.1 m [36], and if we assume /V ¼ 0:3, d = 1 mm and l
= 2 �10�3 Pa s, the other parameters s, kmin, kmax, Df and A0 in Eq.
(29) can be obtained accordingly, then the values of velocity V
can be obtained to be 0.31 m/s, 0.031 m/s, 0.0031 m/s and
0.00031 m/s at different radial distances r = 0.1 m, 1 m, 10 m and
100 m, respectively. When pR � pw = 10 MPa, the values of velocity
Fig. 3. A comparison between the present model predictions and those predicted
by Ergun’s equation.

Fig. 6. The dimensinoless velocity V+ versus the dimensionless radial distance r+ at
different ratios of pR/pw as Uv = 0.4 for radial flow.
V are 3.1 m/s, 0.31 m/s, 0.031 m/s and 0.0031 m/s at different ra-
dial distances r = 0.1 m, 1 m, 10 m and 100 m, respectively.

The dimensionless radial flow velocity by Eq. (31) is shown in
Figs. 5 and 6. It can clearly be seen from Figs. 5 and 6 that the
dimensionless seepage velocity V+ drops sharply with the increase



3278 M. Yun et al. / International Journal of Heat and Mass Transfer 52 (2009) 3272–3278
of the dimensionless radial distance r+ and approaches zero when
r+ tends to infinity. Fig. 5 also shows that the velocity increases
with the increase of porosity. Fig. 6 denotes that the velocity in-
creases with the ratio of pR/pw. These results are consistent with
the physical situations.

5. Conclusions

In this paper, we have derived the plane-radial and plane-paral-
lel flows for Newtonian fluid flow in fractal porous media. Based on
the assumption that the porous medium consists of a bundle/set of
tortuous streamlines/capillaries and on the fractal characteristics
of pore size distribution in porous media, the fractal expressions
for porosity, flow rate, velocity and the permeability for both radial
flow and parallel flow have been obtained. We have also derived
the pressure distribution equations for the slightly compressible
fluid in fractal porous media. The dimensionless analytical expres-
sions for permeability, pressure and velocity are obtained. The ob-
tained expressions are the functions of tortuosity, pore area fractal
dimension, fluid property, maximum and minimum pore diame-
ters, and every parameter has clear physical meaning.

Acknowledgement

This work was supported by the National Natural Science Foun-
dation of China through Grant No. 10572052.

References

[1] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1982.
[2] A.J. Katz, A.H. Thompson, Fractal sandstone pores: implication for conductivity

and pore formation, Phys. Rev. Lett. 54 (1985) 1325–1328.
[3] M. Sahimi, Flow phenomena in rocks: from continuum models to fractals

percolation, cellular, automata, and simulated annealing, Rev. Modern Phys. 65
(1993) 1393–1534.

[4] C.O. Karacan, P.M. Halleck, A fractal model for predicting permeability around
perforation tunnels using size distribution of fragmented grains, J. Petrol Sci.
Eng. 40 (2003) 159–176.

[5] B.M. Yu, Fractal dimensions for multiphase fractal media, Fractals 14 (2006)
111–118.

[6] B. Zhang, B.M. Yu, H.X. Wang, M.J. Yun, A fractal analysis of permeability for
power-law fluids in porous media, Fractals 14 (2006) 171–177.

[7] X.Y. Li, B.E. Logan, Permeability of fractal aggregates, Water Res. 35 (2001)
3373–3380.

[8] Y.J. Liu, B.M. Yu, A fractal model for relative permeability of unsaturated porous
media with capillary pressure effect, Fractals 15 (2007) 217–222.

[9] D.K. Tong, H.Q. Zhang, The flow problem of fluids flow in a fractal reservoir
with double porosity, Appl. Math. Mech. 22 (2001) 1118–1126.
[10] X.Y. Kong, D.L. Li, D.T. Lu, Basis formulas of fractal seepage and type-curves of
fractal reservoirs, J. Xian Shiyou Univ. 22 (2007) 1–5. in Chinese.

[11] R.A. Beier, Pressure-transient model for a vertically fractured well in a fractal
reservoir, SPEFE 9 (1994) 122–128.

[12] J. Levec, A.E. Saez, R.G. Carbonell, The hydrodynamics of tricking flow in packed
beds. Part II: experimental observations, AIChE J. 32 (1986) 369–380.

[13] T.J. Wang, C.H. Wu, L.J. Lee, In-plane permeability measurement and analysis
in liquid composite molding, Polym. Compos. 15 (1994) 278–288.

[14] Z.Q. Chen, P. Cheng, T.S. Zhao, An experimental study of two phase flow and
boiling heat transfer in bi-dispersed porous channels, Int. Commun. Heat Mass
Transfer 27 (2000) 293–302.

[15] R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory
applications, Phys. Rep. 222 (1992) 145–197.

[16] P.M. Adler, B. Berkowitz, Effective medium analysis of random lattices, Trans.
Porous Media 40 (2000) 145–151.

[17] R.B. Pandey, J.L. Becklehimer, J.F. Gettrust, Density profile and flow of driven
gas in an open porous medium with a computer simulation, Phys. A. 289
(2001) 321–335.

[18] B.M. Yu, P. Cheng, A fractal permeability model for bi-dispersed porous media,
Int. J. Heat Mass Transfer 45 (2002) 2983–2993.

[19] B.M. Yu, J.H. Li, Some fractal characters of porous media, Fractals 9 (2001) 365–
372.

[20] B.M. Yu, L.J. Lee, H.Q. Cao, A fractal in-plane permeability model for fabrics,
Polym. Compos. 22 (2002) 201–221.

[21] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
[22] F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic

Press, London, 1979.
[23] B.M. Yu, J.H. Li, A geometry model for tortuosity of flow path in porous media,

Chinese Phys. Lett. 21 (2004) 1569–1571.
[24] M.J. Yun, B.M. Yu, B. Zhang, M.T. Huang, A geometry model for tortuosity of

streamtubes in porous media with spherical particles, Chinese Phys. Lett. 22
(2005) 1464–1467.

[25] M.J. Yun, B.M. Yu, P. Xu, J.S. Wu, Geometrical models for tortuosity of
streamlines in three dimensional porous media, Can. J. Chem. Eng. 84 (2006)
301–309.

[26] M.M. Denn, Process Fluid Mechanics, Prentice-Hall, New Jersey, 1980.
[27] X.Y. Kong, Advanced Mechanics of Fluids in Porous Media, Press of University

of Science and Technology of China, Hefei, China, 1999.
[28] H.N. Hall, Compressibility of reservoir rocks, Trans. AIME 198 (1953) 309–

316.
[29] J. Comiti, M. Renaud, A new model for determining mean structure parameters

of fixed beds from pressure drop measurements: application to beds packed
with parallelepipedal particles, Chem. Eng. Sci. 44 (1989) 539–1545.

[30] J.S. Wu, B.M. Yu, A fractal resistance model for flow through porous media, Int.
J. Heat Mass Transfer 50 (2007) 3925–3932.

[31] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89–
94.

[32] I.F. MacDonald, M.S. EL-Sayed, K. Mow, F.A.L. Dullien, Flow through porous
media – the Ergun equation revised, Ind. Eng. Chem. Fund 18 (1979) 199–208.

[33] J.P. Du Plessis, Analytical quantification of coefficients in the Ergun equation
for fluid friction in a packed bed, Trans. Porous Media 16 (1994) 189–207.

[34] R.E. Hicks, Pressure drop in packed beds of spheres, Ind. Eng. Chem. Fund 9
(1970) 500–502.

[35] J.S. Wu, B.M. Yu, M.J. Yun, A resistance model for flow through porous media,
Trans. Porous Media 71 (3) (2008) 331–343.

[36] J.G. Zhang, G.L. Lei, Y.Y. Zhang, Seepage Mechanics of Oil–Gas Reservoirs, Press
of Petroleum University, Beijing, China, 2004. p. 39.


	Analysis of seepage characters in fractal porous media
	Introduction
	Fractal models for plane-radial flow in isotropic porous media
	Pore number
	Porosity
	Seepage velocity
	Permeability
	The pressure distribution equation
	Dimensionless pressure and velocity

	Fractal models for plane-parallel flow in isotropic porous media
	Pore number
	Porosity
	Seepage velocity
	Permeability
	The pressure distribution equation
	Dimensionless pressure and velocity

	Results and discussion
	Conclusions
	Acknowledgement
	References


